Enhanced asymptotic symmetry algebra of ( 2 + 1 ) -dimensional flat space
In this paper we present a new set of asymptotic boundary conditions for Einstein gravity in (2+1)-dimensions with a vanishing cosmological constant that are a generalization of the Barnich-Compère boundary conditions [G. Barnich and G. Compere, Classical Quantum Gravity 24, F15 (2007)]. These new b...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2017-02, Vol.95 (4), Article 046008 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we present a new set of asymptotic boundary conditions for Einstein gravity in (2+1)-dimensions with a vanishing cosmological constant that are a generalization of the Barnich-Compère boundary conditions [G. Barnich and G. Compere, Classical Quantum Gravity 24, F15 (2007)]. These new boundary conditions lead to an asymptotic symmetry algebra that is generated by a bms3 algebra and two affine u^(1) current algebras. We then apply these boundary conditions to topologically massive gravity (TMG) and determine how the presence of the gravitational Chern-Simons term affects the central extensions of the asymptotic symmetry algebra. We furthermore determine the thermal entropy of solutions obeying our new boundary conditions for both Einstein gravity and TMG. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.95.046008 |