Enhanced asymptotic symmetry algebra of ( 2 + 1 ) -dimensional flat space

In this paper we present a new set of asymptotic boundary conditions for Einstein gravity in (2+1)-dimensions with a vanishing cosmological constant that are a generalization of the Barnich-Compère boundary conditions [G. Barnich and G. Compere, Classical Quantum Gravity 24, F15 (2007)]. These new b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2017-02, Vol.95 (4), Article 046008
Hauptverfasser: Detournay, Stéphane, Riegler, Max
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we present a new set of asymptotic boundary conditions for Einstein gravity in (2+1)-dimensions with a vanishing cosmological constant that are a generalization of the Barnich-Compère boundary conditions [G. Barnich and G. Compere, Classical Quantum Gravity 24, F15 (2007)]. These new boundary conditions lead to an asymptotic symmetry algebra that is generated by a bms3 algebra and two affine u^(1) current algebras. We then apply these boundary conditions to topologically massive gravity (TMG) and determine how the presence of the gravitational Chern-Simons term affects the central extensions of the asymptotic symmetry algebra. We furthermore determine the thermal entropy of solutions obeying our new boundary conditions for both Einstein gravity and TMG.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.95.046008