Supermassive black hole binary environments: Effects on the scaling laws and time to detection for the stochastic background

One of the primary gravitational wave (GW) sources for pulsar timing arrays (PTAs) is the stochastic background formed by supermassive black holes binaries (SMBHBs). In this paper, we investigate how the environments of SMBHBs effect the sensitivity of PTAs by deriving scaling laws for the signal-to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2016-12, Vol.94 (12), Article 123003
Hauptverfasser: Vigeland, S. J., Siemens, X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the primary gravitational wave (GW) sources for pulsar timing arrays (PTAs) is the stochastic background formed by supermassive black holes binaries (SMBHBs). In this paper, we investigate how the environments of SMBHBs effect the sensitivity of PTAs by deriving scaling laws for the signal-to-noise ratio (SNR) of the optimal cross-correlation statistic. The presence of gas and stars around SMBHBs accelerates the merger at large distances, depleting the GW stochastic background at low frequencies. We show that environmental interactions may delay detection by a few years or more, depending on the PTA configuration and the frequency at which the dynamical evolution transitions from being dominated by environmental effects to GW dominated.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.94.123003