New Definitions aboutAI-Statistical Convergence with Respect to a Sequence of Modulus Functions and Lacunary Sequences
In this paper, using an infinite matrix of complex numbers, a modulus function and a lacunary sequence, we generalize the concept ofI-statistical convergence, which is a recently introduced summability method. The names of our new methods areAI-lacunary statistical convergence and stronglyAI-lacunar...
Gespeichert in:
Veröffentlicht in: | Axioms 2018-06, Vol.7 (2) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, using an infinite matrix of complex numbers, a modulus function and a lacunary sequence, we generalize the concept ofI-statistical convergence, which is a recently introduced summability method. The names of our new methods areAI-lacunary statistical convergence and stronglyAI-lacunary convergence with respect to a sequence of modulus functions. These spaces are denoted bySθAI,FandNθAI,F,respectively. We give some inclusion relations betweenSAI,F,SθAI,FandNθAI,F. We also investigate Cesáro summability forAIand we obtain some basic results betweenAI-Cesáro summability, stronglyAI-Cesáro summability and the spaces mentioned above. |
---|---|
ISSN: | 2075-1680 |
DOI: | 10.3390/axioms7020024 |