ZnO doped single wall carbon nanotube as an active medium for gas sensor and solar absorber

In this paper, we reported the synthesis of high-quality ZnO-doped SWCNT (ZnO:SWCNT) nanostructures by perfume spray pyrolysis on copper substrate. The synthesized ZnO:SWCNT nanoparticle explored for the optoelectronic properties and its potential application in photonic devices. In this investigati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2019-01, Vol.30 (1), p.147-158
Hauptverfasser: Kaviyarasu, K., Mola, Genene T., Oseni, S. O., Kanimozhi, K., Magdalane, C. Maria, Kennedy, J., Maaza, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we reported the synthesis of high-quality ZnO-doped SWCNT (ZnO:SWCNT) nanostructures by perfume spray pyrolysis on copper substrate. The synthesized ZnO:SWCNT nanoparticle explored for the optoelectronic properties and its potential application in photonic devices. In this investigation, the ZnO:SWCNT was blended with the solar absorber of thin film organic solar cells which is found to be a successful mechanism in enhancing the photo-generated current in the devices. The best device performance was found at 6% concentration of ZnO:SWCNT by weight in the solution phase of the solar absorber. Furthermore, the pure ZnO:SWCNT as a gas sensor shows good sensitivity to ethanol at different gas loading in ppm. We observed for the first time a high gas sensing activity of ZnO:SWCNT powder which is related to surface state, oxygen adsorption, grain size and lattice defects. The article discusses about the techniques employed during gas sensing measurements using various functionalization strategies.
ISSN:0957-4522
1573-482X
DOI:10.1007/s10854-018-0276-6