A Molecular Force-Based Deployment Algorithm for Flight Coverage Maximization of Multi-Rotor UAV

This paper presents a molecular force-based deployment algorithm of charging stations according to the principle of intermolecular forces in physics to expand the flight coverage of electric-powered multi-rotor Unmanned Aerial Vehicles (UAV). With the help of this algorithm, a multi-rotor UAV can re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 2019-09, Vol.95 (3-4), p.1063-1078
Hauptverfasser: Wang, Xi, Tan, Guanzheng, Liu, Xiya, Zhao, Zhixiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a molecular force-based deployment algorithm of charging stations according to the principle of intermolecular forces in physics to expand the flight coverage of electric-powered multi-rotor Unmanned Aerial Vehicles (UAV). With the help of this algorithm, a multi-rotor UAV can reach anywhere in the specific area by charging at the charging station several times. In this algorithm, a number of equal circles are used to cover the specific area (in a two-dimensional plane), and the center of each circle denotes a charging station. The radius of these circles is equal to the radius of action of the UAV. The number of the circles is set by the users. Under the combined effect of three virtual forces, the centers of the circles, called nodes, keep moving within the specific area, and multiple iterations are performed to adjust the location of each node. Finally, a proper deployment scheme for the charging stations is generated, which can achieve the working area maximization of the UAV by a certain number of charging stations. Simulation experiments were executed, and the results under different conditions show that the proposed algorithm can meet the expected requirements and has an advantage over three other algorithms in terms of coverage ratio. The experiment results also indicate that in the case of dense node density, the proposed algorithm has a better coverage performance than the case of sparse node density. The experimental data are available at https://figshare.com/projects/MFA/24064 . The codes will be published later.
ISSN:0921-0296
1573-0409
DOI:10.1007/s10846-018-0938-x