Achieving high strength and high electrical conductivity in Ag/Cu multilayers
In this work, we investigated the microstructure evolution of Ag/Cu multilayers and its influences on the hardness and electric resistivity with individual layer thickness (h) ranging from 3 to 50 nm. The hardness increases with the decreasing h in the range of 5–20 nm. The barrier to dislocation tr...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2015-01, Vol.106 (1) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we investigated the microstructure evolution of Ag/Cu multilayers and its influences on the hardness and electric resistivity with individual layer thickness (h) ranging from 3 to 50 nm. The hardness increases with the decreasing h in the range of 5–20 nm. The barrier to dislocation transmission by stacking faults, twin boundaries, and interfaces leads to hardness enhancement. Simultaneously, in order to get high conductivity, the strong textures in-layers were induced to form for reducing the amount of grain boundaries. The resistivity keeps low even when h decreases to 10 nm. Furthermore, we developed a facile model to evaluate the comprehensive property of Ag/Cu multilayers—the results indicate that the best combination of strength and conductivity occurs when h = 10 nm. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4905552 |