Perovskite LaRhO3 as a p -type active layer in oxide photovoltaics

Perovskite-type transition-metal oxides have a wide variety of physical properties and triggered intensive research on functional devices in the form of heteroepitaxial junctions. However, there is a missing component that is a p-type conventional band semiconductor. LaRhO3 (LRO) is one of very few...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2015-02, Vol.106 (7)
Hauptverfasser: Nakamura, Masao, Krockenberger, Yoshiharu, Fujioka, Jun, Kawasaki, Masashi, Tokura, Yoshinori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Perovskite-type transition-metal oxides have a wide variety of physical properties and triggered intensive research on functional devices in the form of heteroepitaxial junctions. However, there is a missing component that is a p-type conventional band semiconductor. LaRhO3 (LRO) is one of very few promising candidates having its bandgap between filled t2g and empty eg of Rh in low-spin state, but there has been no report on the synthesis of large-size single crystals or thin films. Here, we report on the junction properties of single-crystalline thin films of LRO grown on (110) oriented Nb-doped SrTiO3 substrates. The external quantum efficiency of the photo-electron conversion exceeds 1% in the visible-light region due to the wide depletion layer and long diffusion length of minority carriers in LRO. Clear indication of p-type band semiconducting character in a perovskite oxide of LRO will pave a way to explore oxide electronics of perovskite heterostructures.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4909512