Local geometric and electronic structures and origin of magnetism in Co-doped BaTiO3 multiferroics
We have prepared polycrystalline samples BaTi1−xCoxO3 (x = 0–0.1) by solid-state reaction. X-ray diffraction and Raman-scattering studies reveal the phase separation in crystal structure as changing Co-doping content (x). The samples with x = 0–0.01 are single phase in a tetragonal structure. At hig...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2015-05, Vol.117 (17) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have prepared polycrystalline samples BaTi1−xCoxO3 (x = 0–0.1) by solid-state reaction. X-ray diffraction and Raman-scattering studies reveal the phase separation in crystal structure as changing Co-doping content (x). The samples with x = 0–0.01 are single phase in a tetragonal structure. At higher doping contents (x > 0.01), there is the formation and development of a secondary hexagonal phase. Magnetization measurements at room temperature indicate a coexistence of paramagnetic and weak-ferromagnetic behaviors in BaTi1−xCoxO3 samples with x > 0, while pure BaTiO3 is diamagnetic. Both these properties increase with increasing x. Analyses of X-ray absorption spectra recorded from BaTi1−xCoxO3 for the Co and Ti K-edges indicate the presence of Co2+ and Co3+ ions. They locate in the Ti4+ site of the tetragonal and hexagonal BaTiO3 structures. Particularly, there is a shift of oxidation state from Co2+ to Co3+ when Co-doping content increases. We believe that the paramagnetic nature in BaTi1−xCoxO3 samples is due to isolated Co2+ and Co3+ centers. The addition of Co3+ ions enhances the paramagnetic behavior. Meanwhile, the origin of ferromagnetism is due to lattice defects, which is less influenced by the changes caused by the variation in concentration of Co2+ and Co3+ ions. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4907182 |