Statistical variability study of random dopant fluctuation on gate-all-around inversion-mode silicon nanowire field-effect transistors

Random dopant fluctuation effects of gate-all-around inversion-mode silicon nanowire field-effect transistors (FETs) with different diameters and extension lengths are investigated. The nanowire FETs with smaller diameter and longer extension length reduce average values and variations of subthresho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2015-03, Vol.106 (10)
Hauptverfasser: Yoon, Jun-Sik, Rim, Taiuk, Kim, Jungsik, Kim, Kihyun, Baek, Chang-Ki, Jeong, Yoon-Ha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Random dopant fluctuation effects of gate-all-around inversion-mode silicon nanowire field-effect transistors (FETs) with different diameters and extension lengths are investigated. The nanowire FETs with smaller diameter and longer extension length reduce average values and variations of subthreshold swing and drain-induced barrier lowering, thus improving short channel immunity. Relative variations of the drain currents increase as the diameter decreases because of decreased current drivability from narrower channel cross-sections. Absolute variations of the drain currents decrease critically as the extension length increases due to decreasing the number of arsenic dopants penetrating into the channel region. To understand variability origins of the drain currents, variations of source/drain series resistance and low-field mobility are investigated. All these two parameters affect the variations of the drain currents concurrently. The nanowire FETs having extension lengths sufficient to prevent dopant penetration into the channel regions and maintaining relatively large cross-sections are suggested to achieve suitable short channel immunity and small variations of the drain currents.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4914976