Anisotropic thermal conductivity in single crystal β-gallium oxide

The thermal conductivities of β-Ga2O3 single crystals along four different crystal directions were measured in the temperature range of 80–495 K using the time domain thermoreflectance method. A large anisotropy was found. At room temperature, the [010] direction has the highest thermal conductivity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2015-03, Vol.106 (11)
Hauptverfasser: Guo, Zhi, Verma, Amit, Wu, Xufei, Sun, Fangyuan, Hickman, Austin, Masui, Takekazu, Kuramata, Akito, Higashiwaki, Masataka, Jena, Debdeep, Luo, Tengfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The thermal conductivities of β-Ga2O3 single crystals along four different crystal directions were measured in the temperature range of 80–495 K using the time domain thermoreflectance method. A large anisotropy was found. At room temperature, the [010] direction has the highest thermal conductivity of 27.0 ± 2.0 W/mK, while that along the [100] direction has the lowest value of 10.9 ± 1.0 W/mK. At high temperatures, the thermal conductivity follows a ∼1/T relationship characteristic of Umklapp phonon scattering, indicating phonon-dominated heat transport in the β-Ga2O3 crystal. The measured experimental thermal conductivity is supported by first-principles calculations, which suggest that the anisotropy in thermal conductivity is due to the differences of the speed of sound along different crystal directions.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4916078