Anisotropic thermal conductivity in single crystal β-gallium oxide
The thermal conductivities of β-Ga2O3 single crystals along four different crystal directions were measured in the temperature range of 80–495 K using the time domain thermoreflectance method. A large anisotropy was found. At room temperature, the [010] direction has the highest thermal conductivity...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2015-03, Vol.106 (11) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The thermal conductivities of β-Ga2O3 single crystals along four different crystal directions were measured in the temperature range of 80–495 K using the time domain thermoreflectance method. A large anisotropy was found. At room temperature, the [010] direction has the highest thermal conductivity of 27.0 ± 2.0 W/mK, while that along the [100] direction has the lowest value of 10.9 ± 1.0 W/mK. At high temperatures, the thermal conductivity follows a ∼1/T relationship characteristic of Umklapp phonon scattering, indicating phonon-dominated heat transport in the β-Ga2O3 crystal. The measured experimental thermal conductivity is supported by first-principles calculations, which suggest that the anisotropy in thermal conductivity is due to the differences of the speed of sound along different crystal directions. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4916078 |