Unipolar self-doping behavior in perovskite CH3NH3PbBr3
Recent theoretical and experimental reports have shown that the perovskite CH3NH3PbI3 exhibits unique ambipolar self-doping properties. Here, we show by density-functional theory calculation that its sister perovskite, CH3NH3PbBr3, exhibits a unipolar self-doping behavior—CH3NH3PbBr3 presents only g...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2015-03, Vol.106 (10) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent theoretical and experimental reports have shown that the perovskite CH3NH3PbI3 exhibits unique ambipolar self-doping properties. Here, we show by density-functional theory calculation that its sister perovskite, CH3NH3PbBr3, exhibits a unipolar self-doping behavior—CH3NH3PbBr3 presents only good p-type conductivity under thermal equilibrium growth conditions. We further show that despite a large bandgap of 2.2 eV, all dominant defects in CH3NH3PbBr3 create shallow levels, which partially explains the ultra-high open-circuit voltages achieved by CH3NH3PbBr3-based thin-film solar cells. Our results suggest that the perovskite CH3NH3PbBr3 can be both an excellent solar cell absorber and a promising low-cost hole-transport material for lead halide perovskite solar cells. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4914544 |