Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide

We demonstrate the ability to guide high-frequency photoacoustic waves through thick tissue with a water-filled silica-capillary (150 μm inner diameter and 30 mm long). An optical-resolution photoacoustic image of a 30 μm diameter absorbing nylon thread was obtained by guiding the acoustic waves in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2015-03, Vol.106 (9)
Hauptverfasser: Simandoux, Olivier, Stasio, Nicolino, Gateau, Jérome, Huignard, Jean-Pierre, Moser, Christophe, Psaltis, Demetri, Bossy, Emmanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate the ability to guide high-frequency photoacoustic waves through thick tissue with a water-filled silica-capillary (150 μm inner diameter and 30 mm long). An optical-resolution photoacoustic image of a 30 μm diameter absorbing nylon thread was obtained by guiding the acoustic waves in the capillary through a 3 cm thick fat layer. The transmission loss through the capillary was about −20 dB, much lower than the −120 dB acoustic attenuation through the fat layer. The overwhelming acoustic attenuation of high-frequency acoustic waves by biological tissue can therefore be avoided by the use of a small footprint capillary acoustic waveguide for remote detection. We finally demonstrate that the capillary can be used as a dual optical-in acoustic-out waveguide, paving the way for the development of minimally invasive optical-resolution photoacoustic endoscopes free of any acoustic or optical elements at their imaging tip.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4913969