A proof of the conjecture by Carpentier-De Sole-Kac
We prove the following conjecture by Carpentier, De Sole, and Kac: let K be a differential field and R be a differential subring of K. Let M be a matrix whose elements are differential operators with coefficients in R. Then, if M has degeneracy degree 1, the Dieudonné determinant of M lies in R.
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2015-05, Vol.56 (5), p.1 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the following conjecture by Carpentier, De Sole, and Kac: let K be a differential field and R be a differential subring of K. Let M be a matrix whose elements are differential operators with coefficients in R. Then, if M has degeneracy degree 1, the Dieudonné determinant of M lies in R. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4919888 |