A proof of the conjecture by Carpentier-De Sole-Kac

We prove the following conjecture by Carpentier, De Sole, and Kac: let K be a differential field and R be a differential subring of K. Let M be a matrix whose elements are differential operators with coefficients in R. Then, if M has degeneracy degree 1, the Dieudonné determinant of M lies in R.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2015-05, Vol.56 (5), p.1
1. Verfasser: Stubis, Keaton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the following conjecture by Carpentier, De Sole, and Kac: let K be a differential field and R be a differential subring of K. Let M be a matrix whose elements are differential operators with coefficients in R. Then, if M has degeneracy degree 1, the Dieudonné determinant of M lies in R.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4919888