Zero curvature representation, bi-Hamiltonian structure, and an integrable hierarchy for the Zakharov-Ito system

In the present paper, we present an integrable hierarchy for the Zakharov-Ito system. We first construct the Lenard recursion sequence and zero curvature representation for the Zakharov-Ito system, following Cao’s method as significantly generalized by other authors. We then construct the bi-Hamilto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2015-06, Vol.56 (6), p.1
Hauptverfasser: Baxter, Mathew, Choudhury, S. Roy, Van Gorder, Robert A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper, we present an integrable hierarchy for the Zakharov-Ito system. We first construct the Lenard recursion sequence and zero curvature representation for the Zakharov-Ito system, following Cao’s method as significantly generalized by other authors. We then construct the bi-Hamiltonian structures employing variational trace identities but woven together with the Lenard recursion sequences. From this, we are in a position to construct an integrable hierarchy of equations from the Zakharov-Ito system, and we obtain the recursion operator and Poisson brackets for constructing this hierarchy. Finally, we demonstrate that the obtained hierarchy is indeed Liouville integrable.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4922361