Zero curvature representation, bi-Hamiltonian structure, and an integrable hierarchy for the Zakharov-Ito system
In the present paper, we present an integrable hierarchy for the Zakharov-Ito system. We first construct the Lenard recursion sequence and zero curvature representation for the Zakharov-Ito system, following Cao’s method as significantly generalized by other authors. We then construct the bi-Hamilto...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2015-06, Vol.56 (6), p.1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper, we present an integrable hierarchy for the Zakharov-Ito system. We first construct the Lenard recursion sequence and zero curvature representation for the Zakharov-Ito system, following Cao’s method as significantly generalized by other authors. We then construct the bi-Hamiltonian structures employing variational trace identities but woven together with the Lenard recursion sequences. From this, we are in a position to construct an integrable hierarchy of equations from the Zakharov-Ito system, and we obtain the recursion operator and Poisson brackets for constructing this hierarchy. Finally, we demonstrate that the obtained hierarchy is indeed Liouville integrable. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4922361 |