A compact heat transfer model based on an enhanced Fourier law for analysis of frequency-domain thermoreflectance experiments
A recently developed enhanced Fourier law is applied to the problem of extracting thermal properties of materials from frequency-domain thermoreflectance (FDTR) experiments. The heat transfer model comprises contributions from two phonon channels: one a high-heat-capacity diffuse channel consisting...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2015-06, Vol.106 (26) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A recently developed enhanced Fourier law is applied to the problem of extracting thermal properties of materials from frequency-domain thermoreflectance (FDTR) experiments. The heat transfer model comprises contributions from two phonon channels: one a high-heat-capacity diffuse channel consisting of phonons of mean free path (MFP) less than a threshold value, and the other a low-heat-capacity channel consisting of phonons with MFP higher than this value that travel quasi-ballistically over length scales of interest. The diffuse channel is treated using the Fourier law, while the quasi-ballistic channel is analyzed using a second-order spherical harmonic expansion of the phonon distribution function. A recent analysis of FDTR experimental data suggested the use of FDTR in deriving large portions of the MFP accumulation function; however, it is shown here that the data can adequately be explained using our minimum-parameter model, thus highlighting an important limitation of FDTR experiments in exploring the accumulation function of bulk matter. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4923310 |