Microstructural characterization of pressed HMX material sets at differing densities

The detonation physics community has embraced the idea that initiation of high explosives (HE) proceeds from an ignition event through subsequent growth to steady detonation. A weakness of all the commonly used ignition and growth models is the microstructural characteristics of the HE are not expli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Molek, C. D., Welle, E. J., Wixom, R. R., Ritchey, M. B., Samuels, P., Horie, Y.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The detonation physics community has embraced the idea that initiation of high explosives (HE) proceeds from an ignition event through subsequent growth to steady detonation. A weakness of all the commonly used ignition and growth models is the microstructural characteristics of the HE are not explicitly incorporated in their ignition and growth terms. This is the case in spite of a demonstrated, but not well-understood, empirical link between particle morphology and initiation of HE. Morphological effects have been parametrically studied in many ways, the majority of efforts focus on establishing a tie between bulk powder metrics and initiation of the pressed beds. More recently, there has been a shift toward characterizing the microstructure of pressed beds in order to understand the underlying mechanisms governing initiation behavior. In this work, we have characterized the microstructures of two HMX classes pressed at three densities using ion bombardment techniques. We find more significant compaction associated with the larger crystalline material – Class 3 – than the smaller fluid energy milled material. The Class 3 material exhibits evidence of crystal cracking. Finally, we discuss this evidence and our attempt to correlate microstructural features to observed changes in continuum level initiation behavior.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4971501