Towards a Guidance System to Aid in the Dosimetry Calculation of Intraoperative Electron Radiation Therapy

In Intraoperative Electron Radiation Therapy (IOERT), the lack of specific planning tools limits its applicability, the need for accurate dosimetry estimation and application during the therapy being the most critical. Recently, some works have been presented that try to overcome some of the limitat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of imaging 2015-12, Vol.1 (1), p.180-192
Hauptverfasser: Portalés, Cristina, Gimeno, Jesús, Vera, Lucía, Fernández, Marcos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Intraoperative Electron Radiation Therapy (IOERT), the lack of specific planning tools limits its applicability, the need for accurate dosimetry estimation and application during the therapy being the most critical. Recently, some works have been presented that try to overcome some of the limitations for establishing planning tools, though still an accurate guidance system that tracks, in real-time, the applicator and the patient is needed. In these surgical environments, the acquisition of an accurate 3D shape of the patient’s tumor bed in real-time is of high interest, as current systems make use of a 3D model acquired before the treatment. In this paper, an optical-based system is presented that is able to register, in real-time, the different objects (rigid objects) taking part in such a treatment. The presented guidance system and the related methodology are highly interactive, where a usability design has also been provided for non-expert users. Additionally, four different approaches are explored and evaluated to acquire the 3D model of the patient (non-rigid object) in real-time, where accuracies in the range of 1 mm can be achieved without the need of using expensive devices.
ISSN:2313-433X
2313-433X
DOI:10.3390/jimaging1010180