Data models for service failure prediction in supply-chain networks

We aim to predict and explain service failures in supply-chain networks, more precisely among last-mile pickup and delivery services to customers. We analyze a dataset of 500,000 services using (1) supervised classification with Random Forests, and (2) Association Rules. Our classifier reaches an av...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-10
Hauptverfasser: Sharma, Monika, Glatard, Tristan, Gelinas, Eric, Tagmouti, Mariam, Jaumard, Brigitte
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sharma, Monika
Glatard, Tristan
Gelinas, Eric
Tagmouti, Mariam
Jaumard, Brigitte
description We aim to predict and explain service failures in supply-chain networks, more precisely among last-mile pickup and delivery services to customers. We analyze a dataset of 500,000 services using (1) supervised classification with Random Forests, and (2) Association Rules. Our classifier reaches an average sensitivity of 0.7 and an average specificity of 0.7 for the 5 studied types of failure. Association Rules reassert the importance of confirmation calls to prevent failures due to customers not at home, show the importance of the time window size, slack time, and geographical location of the customer for the other failure types, and highlight the effect of the retailer company on several failure types. To reduce the occurrence of service failures, our data models could be coupled to optimizers, or used to define counter-measures to be taken by human dispatchers.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2124643526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124643526</sourcerecordid><originalsourceid>FETCH-proquest_journals_21246435263</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_CHgutJu2eq-KD_BeQt1iakzibqL4e3vwAZ6GYWYhMlCqKvY1wErkzFNZltDuoGlUJrqDjlo-_BUty9GTZKSXGVCO2thEKAPh1QzReCeNk5xCsJ9iuOlZHMa3pztvxHLUljH_cS22p-OlOxeB_DMhx37yidyceqigbmvVQKv-u74hHTqO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124643526</pqid></control><display><type>article</type><title>Data models for service failure prediction in supply-chain networks</title><source>Free E- Journals</source><creator>Sharma, Monika ; Glatard, Tristan ; Gelinas, Eric ; Tagmouti, Mariam ; Jaumard, Brigitte</creator><creatorcontrib>Sharma, Monika ; Glatard, Tristan ; Gelinas, Eric ; Tagmouti, Mariam ; Jaumard, Brigitte</creatorcontrib><description>We aim to predict and explain service failures in supply-chain networks, more precisely among last-mile pickup and delivery services to customers. We analyze a dataset of 500,000 services using (1) supervised classification with Random Forests, and (2) Association Rules. Our classifier reaches an average sensitivity of 0.7 and an average specificity of 0.7 for the 5 studied types of failure. Association Rules reassert the importance of confirmation calls to prevent failures due to customers not at home, show the importance of the time window size, slack time, and geographical location of the customer for the other failure types, and highlight the effect of the retailer company on several failure types. To reduce the occurrence of service failures, our data models could be coupled to optimizers, or used to define counter-measures to be taken by human dispatchers.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Customer services ; Customers ; Data models ; Delivery services ; Failure ; Failure analysis ; Geographical locations ; Mathematical models ; Supply chains ; Windows (intervals)</subject><ispartof>arXiv.org, 2018-10</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Sharma, Monika</creatorcontrib><creatorcontrib>Glatard, Tristan</creatorcontrib><creatorcontrib>Gelinas, Eric</creatorcontrib><creatorcontrib>Tagmouti, Mariam</creatorcontrib><creatorcontrib>Jaumard, Brigitte</creatorcontrib><title>Data models for service failure prediction in supply-chain networks</title><title>arXiv.org</title><description>We aim to predict and explain service failures in supply-chain networks, more precisely among last-mile pickup and delivery services to customers. We analyze a dataset of 500,000 services using (1) supervised classification with Random Forests, and (2) Association Rules. Our classifier reaches an average sensitivity of 0.7 and an average specificity of 0.7 for the 5 studied types of failure. Association Rules reassert the importance of confirmation calls to prevent failures due to customers not at home, show the importance of the time window size, slack time, and geographical location of the customer for the other failure types, and highlight the effect of the retailer company on several failure types. To reduce the occurrence of service failures, our data models could be coupled to optimizers, or used to define counter-measures to be taken by human dispatchers.</description><subject>Customer services</subject><subject>Customers</subject><subject>Data models</subject><subject>Delivery services</subject><subject>Failure</subject><subject>Failure analysis</subject><subject>Geographical locations</subject><subject>Mathematical models</subject><subject>Supply chains</subject><subject>Windows (intervals)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNikEKwjAQAIMgWLR_CHgutJu2eq-KD_BeQt1iakzibqL4e3vwAZ6GYWYhMlCqKvY1wErkzFNZltDuoGlUJrqDjlo-_BUty9GTZKSXGVCO2thEKAPh1QzReCeNk5xCsJ9iuOlZHMa3pztvxHLUljH_cS22p-OlOxeB_DMhx37yidyceqigbmvVQKv-u74hHTqO</recordid><startdate>20181020</startdate><enddate>20181020</enddate><creator>Sharma, Monika</creator><creator>Glatard, Tristan</creator><creator>Gelinas, Eric</creator><creator>Tagmouti, Mariam</creator><creator>Jaumard, Brigitte</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181020</creationdate><title>Data models for service failure prediction in supply-chain networks</title><author>Sharma, Monika ; Glatard, Tristan ; Gelinas, Eric ; Tagmouti, Mariam ; Jaumard, Brigitte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21246435263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Customer services</topic><topic>Customers</topic><topic>Data models</topic><topic>Delivery services</topic><topic>Failure</topic><topic>Failure analysis</topic><topic>Geographical locations</topic><topic>Mathematical models</topic><topic>Supply chains</topic><topic>Windows (intervals)</topic><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Monika</creatorcontrib><creatorcontrib>Glatard, Tristan</creatorcontrib><creatorcontrib>Gelinas, Eric</creatorcontrib><creatorcontrib>Tagmouti, Mariam</creatorcontrib><creatorcontrib>Jaumard, Brigitte</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Monika</au><au>Glatard, Tristan</au><au>Gelinas, Eric</au><au>Tagmouti, Mariam</au><au>Jaumard, Brigitte</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Data models for service failure prediction in supply-chain networks</atitle><jtitle>arXiv.org</jtitle><date>2018-10-20</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We aim to predict and explain service failures in supply-chain networks, more precisely among last-mile pickup and delivery services to customers. We analyze a dataset of 500,000 services using (1) supervised classification with Random Forests, and (2) Association Rules. Our classifier reaches an average sensitivity of 0.7 and an average specificity of 0.7 for the 5 studied types of failure. Association Rules reassert the importance of confirmation calls to prevent failures due to customers not at home, show the importance of the time window size, slack time, and geographical location of the customer for the other failure types, and highlight the effect of the retailer company on several failure types. To reduce the occurrence of service failures, our data models could be coupled to optimizers, or used to define counter-measures to be taken by human dispatchers.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2124643526
source Free E- Journals
subjects Customer services
Customers
Data models
Delivery services
Failure
Failure analysis
Geographical locations
Mathematical models
Supply chains
Windows (intervals)
title Data models for service failure prediction in supply-chain networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Data%20models%20for%20service%20failure%20prediction%20in%20supply-chain%20networks&rft.jtitle=arXiv.org&rft.au=Sharma,%20Monika&rft.date=2018-10-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2124643526%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124643526&rft_id=info:pmid/&rfr_iscdi=true