Data models for service failure prediction in supply-chain networks
We aim to predict and explain service failures in supply-chain networks, more precisely among last-mile pickup and delivery services to customers. We analyze a dataset of 500,000 services using (1) supervised classification with Random Forests, and (2) Association Rules. Our classifier reaches an av...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We aim to predict and explain service failures in supply-chain networks, more precisely among last-mile pickup and delivery services to customers. We analyze a dataset of 500,000 services using (1) supervised classification with Random Forests, and (2) Association Rules. Our classifier reaches an average sensitivity of 0.7 and an average specificity of 0.7 for the 5 studied types of failure. Association Rules reassert the importance of confirmation calls to prevent failures due to customers not at home, show the importance of the time window size, slack time, and geographical location of the customer for the other failure types, and highlight the effect of the retailer company on several failure types. To reduce the occurrence of service failures, our data models could be coupled to optimizers, or used to define counter-measures to be taken by human dispatchers. |
---|---|
ISSN: | 2331-8422 |