Minimal interval exchange transformations with flips
We consider interval exchange transformations of $n$ intervals with $k$ flips, or $(n,k)$ -IETs for short, for positive integers $k,n$ with $k\leq n$ . Our main result establishes the existence of minimal uniquely ergodic $(n,k)$ -IETs when $n\geq 4$ ; moreover, these IETs are self-induced for $2\le...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2018-12, Vol.38 (8), p.3101-3144 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider interval exchange transformations of
$n$
intervals with
$k$
flips, or
$(n,k)$
-IETs for short, for positive integers
$k,n$
with
$k\leq n$
. Our main result establishes the existence of minimal uniquely ergodic
$(n,k)$
-IETs when
$n\geq 4$
; moreover, these IETs are self-induced for
$2\leq k\leq n-1$
. This result extends the work on transitivity in Gutierrez et al [Transitive circle exchange transformations with flips. Discrete Contin. Dyn. Syst. 26(1) (2010), 251–263]. In order to achieve our objective we make a direct construction; in particular, we use the Rauzy induction to build a periodic Rauzy graph whose associated matrix has a positive power. Then we use a result in the Perron–Frobenius theory [Pullman, A geometric approach to the theory of non-negative matrices. Linear Algebra Appl. 4 (1971) 297–312] which allows us to ensure the existence of these minimal self-induced and uniquely ergodic
$(n,k)$
-IETs,
$2\leq k\leq n-1$
. We then find other permutations in the same Rauzy class generating minimal uniquely ergodic
$(n,1)$
- and
$(n,n)$
-IETs. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2017.5 |