Electron motion analysis of a radial-radiated electron beam in a radial-line drift tube with finite magnetic field conducted
Radial-radiated electron beam is widely employed in radial-line structure microwave devices. The quality of the electron beam has a crucial effect on the operating performance of these devices. This paper analyzes theoretically this electron motion in a radial-line drift tube with finite magnetic fi...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2017-02, Vol.24 (2) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radial-radiated electron beam is widely employed in radial-line structure microwave devices. The quality of the electron beam has a crucial effect on the operating performance of these devices. This paper analyzes theoretically this electron motion in a radial-line drift tube with finite magnetic field conducted. The beam width, spatial period, and fluctuation amplitude are quantitatively analyzed with different beam current parameters. By the particle-in-cell simulation, we examine the theoretical analysis under the condition of a designed realistic coil configuration. It indicates that the derived beam envelope function is capable of predicting the radial-radiated beam trajectory approximately. Meanwhile, it is found that the off-axial z-direction magnetic field, in spite of its greatly slight amplitude, is also one necessary consideration for the propagation characteristic of the radial-radiated electron beam. Furthermore, the presented electron motion analysis may be instructive for the design of the electronic optical system of the radial-line structure microwave devices. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.4976135 |