Development of an alkali chloride vapour-generating apparatus for calibration of ultraviolet absorption measurements
A novel design of alkali chloride vapour-generating cell has been developed, which can serve as a calibration cell for quantitative ultraviolet absorption concentration measurements and meticulous spectral investigations of alkali compounds. The calibration cell was designed to provide alkali vapour...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2017-02, Vol.88 (2), p.023112-023112 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel design of alkali chloride vapour-generating cell has been developed, which can serve as a calibration cell for quantitative ultraviolet absorption concentration measurements and meticulous spectral investigations of alkali compounds. The calibration cell was designed to provide alkali vapour of well-controlled concentrations and temperatures, and consisted of a sealed quartz cell measuring 0.4 m in length with a temperature-controlled reservoir containing solid alkali salt. The cell was placed in a furnace and the alkali vapours generated from the reservoir have direct access to the measuring chamber. Investigations of potassium chloride (KCl) were made on sublimated vapour at temperatures 650, 700, 750, 780, and 800 °C while the reservoir temperature was kept 50 °C lower to avoid condensation. The cell provides stable KCl vapour pressures, and the furnace provides a homogenous temperature profile along the cell. KCl vapour pressures are well characterised and conform the base for determination of the KCl concentration in the cell. The alkali chloride levels matched the concentration range of the absorption setup and indicated a previously employed calibration method to overestimate KCl concentrations. The KCl absorption cross sections for wavelengths
λ
=
197.6
nm and
λ
=
246.2
nm were calculated to be 3.4 × 10−17 and 2.9 × 10−17 cm2/molecule, respectively. The absorption cross section spectra did not show any structural differences with increasing temperature, which could indicate influence of dimers or significant changes of the population in the KCl vibrational states. The KCl absorption cross sections thus did not show any temperature dependence in the temperature region of 700–800 °C. Moreover, the applicability of the calibration cell for measurement of other alkali chlorides and hydroxides is discussed. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/1.4975590 |