An improved shallow water equation model for water animation
In this paper, we proposed a new scheme for simulating water flows under shallow water assumption. The method is an extension of traditional shallow water equations. In contrast to traditional methods, we design a dynamic coordinate system for modeling in order to efficiently simulate water flows. W...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we proposed a new scheme for simulating water flows under shallow water assumption. The method is an extension of traditional shallow water equations. In contrast to traditional methods, we design a dynamic coordinate system for modeling in order to efficiently simulate water flows. Within this system, we derive our specialized shallow water equations directly from the Navier-Stockes equation. At the same time, we develop an implicit mechanism for solving the advection term and a vector projection operator for solving the external forces acting on water. We also present a two-way coupling method for simulating the interaction between water and rigid solid. The experimental results show that the proposed scheme can achieve a more realistic and accurate water model compared with the traditional methods, especially when the solid surfaces are too steep. Also we demonstrate the efficiency of our method in several scenes, all run at least 50 frames per second on average which allows real-time simulation. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4977362 |