Role of specific apoptotic pathways in the restoration of paclitaxel-induced apoptosis by valspodar in doxorubicin-resistant MCF-7 breast cancer cells

Paclitaxel (Taxol) kills tumor cells by inducing both cellular necrosis and apoptosis. A major impediment to paclitaxel cytotoxicity is the establishment of multidrug resistance whereby exposure to one chemotherapeutic agent results in cross-resistance to a wide variety of other drugs. For example,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Breast cancer research and treatment 2000-02, Vol.59 (3), p.231-244
Hauptverfasser: Chadderton, A, Villeneuve, D J, Gluck, S, Kirwan-Rhude, A F, Gannon, B R, Blais, D E, Parissenti, A M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Paclitaxel (Taxol) kills tumor cells by inducing both cellular necrosis and apoptosis. A major impediment to paclitaxel cytotoxicity is the establishment of multidrug resistance whereby exposure to one chemotherapeutic agent results in cross-resistance to a wide variety of other drugs. For example, selection of MCF-7 breast cancer cells for resistance to doxorubicin (MCF-7ADR cells) results in cross-resistance to paclitaxel. This appears to involve the overexpression of the drug transporter P-glycoprotein which can efflux both drugs from tumor cells. However, MCF-7ADR cells possess a deletion mutation in p53 and have considerably reduced levels of the Fas receptor, Fas ligand, caspase-2, caspase-6, and caspase-8, suggesting that paclitaxel resistance may also stem from a bona fide block in paclitaxel-induced apoptosis in these cells. To address this issue, we examined the ability of the P-glycoprotein inhibitor valspodar to restore paclitaxel accumulation, paclitaxel cytotoxicity, and paclitaxel-induced apoptosis. Compared to drug sensitive MCF-7 cells, MCF-7ADR cells accumulated >6-fold less paclitaxel, were approximately 100-fold more resistant to killing by the drug, and were highly resistant to paclitaxel-induced apoptosis. In contrast, MCF-7ADR cells pretreated with valspodar were indistinguishable from drug-sensitive cells in their ability to accumulate paclitaxel, in their chemosensitivity to the drug, and in their ability to undergo paclitaxel-induced apoptosis. Valspodar, by itself, did not affect these parameters. This suggests that the enhancement of paclitaxel toxicity in MCF-7ADR cells involves a restoration of apoptosis and not solely through enhanced drug-induced necrosis. Morever, it appears that changes in the levels/activity of p53, the Fas receptor, Fas ligand, caspase-2, caspase-6, or caspase-8 activity have little effect on paclitaxel-induced cytotoxicity and apoptosis in human breast cancer cells.
ISSN:0167-6806
1573-7217
DOI:10.1023/A:1006344200094