Stagnation point flow and heat transfer of a nanofluid over a stretching/shrinking sheet with convective boundary conditions and suction

The present study examines the stagnation point flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet with convective boundary conditions. The governing equations and their associated boundary conditions are initially cast into dimensionless and similarity form by similar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jusoh, Rahimah, Nazar, Roslinda
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study examines the stagnation point flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet with convective boundary conditions. The governing equations and their associated boundary conditions are initially cast into dimensionless and similarity form by similarity transformation. The resulting system of equations is then solved numerically using the boundary value problem solver “bvp4c” in Matlab for several values of the governing parameters. Numerical solutions are obtained for the velocity, temperature and concentration profiles as well as the skin friction coefficient, the local Nusselt number and the Sherwood number. Dual solutions have also been discovered in this problem for a certain range of the suction parameter. The features of the flow and heat transfer characteristics for various values of the Schmidt number, Biot number, suction parameter, Brownian motion parameter and thermophoresis parameter are analyzed and discussed.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4980906