A multichannel visible spectroscopy system for the ITER-like W divertor on EAST

To facilitate long-pulse high power operation, an ITER-like actively cooled tungsten (W) divertor was installed in Experimental Advanced Superconducting Tokamak (EAST) to replace the original upper graphite divertor in 2014. A dedicated multichannel visible spectroscopic diagnostic system has been a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2017-04, Vol.88 (4), p.043502-043502
Hauptverfasser: Mao, Hongmin, Ding, Fang, Luo, Guang-Nan, Hu, Zhenhua, Chen, Xiahua, Xu, Feng, Yang, Zhongshi, Chen, Jingbo, Wang, Liang, Ding, Rui, Zhang, Ling, Gao, Wei, Xu, Jichan, Wu, Chengrui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 043502
container_issue 4
container_start_page 043502
container_title Review of scientific instruments
container_volume 88
creator Mao, Hongmin
Ding, Fang
Luo, Guang-Nan
Hu, Zhenhua
Chen, Xiahua
Xu, Feng
Yang, Zhongshi
Chen, Jingbo
Wang, Liang
Ding, Rui
Zhang, Ling
Gao, Wei
Xu, Jichan
Wu, Chengrui
description To facilitate long-pulse high power operation, an ITER-like actively cooled tungsten (W) divertor was installed in Experimental Advanced Superconducting Tokamak (EAST) to replace the original upper graphite divertor in 2014. A dedicated multichannel visible spectroscopic diagnostic system has been accordingly developed for the characterization of the plasma and impurities in the W divertor. An array of 22 lines-of-sight (LOSs) provides a profile measurement of the light emitted from the plasma along upper outer divertor, and the other 17 vertical LOSs view the upper inner divertor, achieving a 13 mm poloidal resolution in both regions. The light emitted from the plasma is collected by a specially designed optical lens assembly and then transferred to a Czerny-Turner spectrometer via 40 m quartz fibers. At the end, the spectra dispersed by the spectrometer are recorded with an Electron-Multiplying Charge Coupled Device (EMCCD). The optical throughput and quantum efficiency of the system are optimized in the wavelength range 350-700 nm. The spectral resolution/coverage can be adjusted from 0.01 nm/3 nm to 0.41 nm/140 nm by switching the grating with suitable groove density. The frame rate depends on the setting of LOS number in EMCCD and can reach nearly 2 kHz for single LOS detection. The light collected by the front optical lens can also be divided and partly transferred to a photomultiplier tube array with specified bandpass filter, which can provide faster sampling rates by up to 200 kHz. The spectroscopic diagnostic is routinely operated in EAST discharges with absolute optical calibrations applied before and after each campaign, monitoring photon fluxes from impurities and H recycling in the upper divertor. This paper presents the technical details of the diagnostic and typical measurements during EAST discharges.
doi_str_mv 10.1063/1.4979406
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2124503709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124503709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-2e510be1c0b9b6016081c347bad51c688e07dbc7f3b65408150b0e9922fe89283</originalsourceid><addsrcrecordid>eNp90E1rGzEQBmARUhIn7SF_IAhySQqbjj5XOhrjtoGAoXXpcVnJs0TJfjgrrcH_vip2cuihc9FhHl40LyFXDO4ZaPGF3UtbWgn6hMwYGFuUmotTMgMQstClNOfkIsZnyKMYOyPn3EilubIzsprTbmpT8E9132NLdyEG1yKNW_RpHKIftnsa9zFhR5thpOkJ6cN6-aNowwvS33QTdjimvBh6upz_XH8kH5q6jfjp-F6SX1-X68X34nH17WExfyy8ZDIVHBUDh8yDs04D02CYF7J09UYxr41BKDfOl41wWsm8VOAAreW8QWO5EZfk9pC7HYfXCWOquhA9tm3d4zDFihkrrNZKlJne_EOfh2ns8-8qzrhUIEqwWd0dlM9XxxGbajuGrh73FYPqb8sVq44tZ3t9TJxch5t3-VZrBp8PIPqQ6hSG_j9pfwDVgoGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124503709</pqid></control><display><type>article</type><title>A multichannel visible spectroscopy system for the ITER-like W divertor on EAST</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Mao, Hongmin ; Ding, Fang ; Luo, Guang-Nan ; Hu, Zhenhua ; Chen, Xiahua ; Xu, Feng ; Yang, Zhongshi ; Chen, Jingbo ; Wang, Liang ; Ding, Rui ; Zhang, Ling ; Gao, Wei ; Xu, Jichan ; Wu, Chengrui</creator><creatorcontrib>Mao, Hongmin ; Ding, Fang ; Luo, Guang-Nan ; Hu, Zhenhua ; Chen, Xiahua ; Xu, Feng ; Yang, Zhongshi ; Chen, Jingbo ; Wang, Liang ; Ding, Rui ; Zhang, Ling ; Gao, Wei ; Xu, Jichan ; Wu, Chengrui</creatorcontrib><description>To facilitate long-pulse high power operation, an ITER-like actively cooled tungsten (W) divertor was installed in Experimental Advanced Superconducting Tokamak (EAST) to replace the original upper graphite divertor in 2014. A dedicated multichannel visible spectroscopic diagnostic system has been accordingly developed for the characterization of the plasma and impurities in the W divertor. An array of 22 lines-of-sight (LOSs) provides a profile measurement of the light emitted from the plasma along upper outer divertor, and the other 17 vertical LOSs view the upper inner divertor, achieving a 13 mm poloidal resolution in both regions. The light emitted from the plasma is collected by a specially designed optical lens assembly and then transferred to a Czerny-Turner spectrometer via 40 m quartz fibers. At the end, the spectra dispersed by the spectrometer are recorded with an Electron-Multiplying Charge Coupled Device (EMCCD). The optical throughput and quantum efficiency of the system are optimized in the wavelength range 350-700 nm. The spectral resolution/coverage can be adjusted from 0.01 nm/3 nm to 0.41 nm/140 nm by switching the grating with suitable groove density. The frame rate depends on the setting of LOS number in EMCCD and can reach nearly 2 kHz for single LOS detection. The light collected by the front optical lens can also be divided and partly transferred to a photomultiplier tube array with specified bandpass filter, which can provide faster sampling rates by up to 200 kHz. The spectroscopic diagnostic is routinely operated in EAST discharges with absolute optical calibrations applied before and after each campaign, monitoring photon fluxes from impurities and H recycling in the upper divertor. This paper presents the technical details of the diagnostic and typical measurements during EAST discharges.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.4979406</identifier><identifier>PMID: 28456259</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bandpass filters ; Charge coupled devices ; Diagnostic systems ; Digital cameras ; Discharge ; Fluxes ; Impurities ; Nuclear power plants ; Photomultiplier tubes ; Profile measurement ; Quantum efficiency ; Scientific apparatus &amp; instruments ; Spectral resolution ; Spectroscopy ; Spectrum analysis ; Tokamak devices ; Tungsten</subject><ispartof>Review of scientific instruments, 2017-04, Vol.88 (4), p.043502-043502</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-2e510be1c0b9b6016081c347bad51c688e07dbc7f3b65408150b0e9922fe89283</citedby><cites>FETCH-LOGICAL-c414t-2e510be1c0b9b6016081c347bad51c688e07dbc7f3b65408150b0e9922fe89283</cites><orcidid>0000-0003-4624-4679 ; 0000-0001-5886-3114 ; 0000-0001-7880-9588 ; 0000000158863114 ; 0000000178809588 ; 0000000346244679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.4979406$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28456259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Hongmin</creatorcontrib><creatorcontrib>Ding, Fang</creatorcontrib><creatorcontrib>Luo, Guang-Nan</creatorcontrib><creatorcontrib>Hu, Zhenhua</creatorcontrib><creatorcontrib>Chen, Xiahua</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Yang, Zhongshi</creatorcontrib><creatorcontrib>Chen, Jingbo</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>Ding, Rui</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>Xu, Jichan</creatorcontrib><creatorcontrib>Wu, Chengrui</creatorcontrib><title>A multichannel visible spectroscopy system for the ITER-like W divertor on EAST</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>To facilitate long-pulse high power operation, an ITER-like actively cooled tungsten (W) divertor was installed in Experimental Advanced Superconducting Tokamak (EAST) to replace the original upper graphite divertor in 2014. A dedicated multichannel visible spectroscopic diagnostic system has been accordingly developed for the characterization of the plasma and impurities in the W divertor. An array of 22 lines-of-sight (LOSs) provides a profile measurement of the light emitted from the plasma along upper outer divertor, and the other 17 vertical LOSs view the upper inner divertor, achieving a 13 mm poloidal resolution in both regions. The light emitted from the plasma is collected by a specially designed optical lens assembly and then transferred to a Czerny-Turner spectrometer via 40 m quartz fibers. At the end, the spectra dispersed by the spectrometer are recorded with an Electron-Multiplying Charge Coupled Device (EMCCD). The optical throughput and quantum efficiency of the system are optimized in the wavelength range 350-700 nm. The spectral resolution/coverage can be adjusted from 0.01 nm/3 nm to 0.41 nm/140 nm by switching the grating with suitable groove density. The frame rate depends on the setting of LOS number in EMCCD and can reach nearly 2 kHz for single LOS detection. The light collected by the front optical lens can also be divided and partly transferred to a photomultiplier tube array with specified bandpass filter, which can provide faster sampling rates by up to 200 kHz. The spectroscopic diagnostic is routinely operated in EAST discharges with absolute optical calibrations applied before and after each campaign, monitoring photon fluxes from impurities and H recycling in the upper divertor. This paper presents the technical details of the diagnostic and typical measurements during EAST discharges.</description><subject>Bandpass filters</subject><subject>Charge coupled devices</subject><subject>Diagnostic systems</subject><subject>Digital cameras</subject><subject>Discharge</subject><subject>Fluxes</subject><subject>Impurities</subject><subject>Nuclear power plants</subject><subject>Photomultiplier tubes</subject><subject>Profile measurement</subject><subject>Quantum efficiency</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Spectral resolution</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Tokamak devices</subject><subject>Tungsten</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90E1rGzEQBmARUhIn7SF_IAhySQqbjj5XOhrjtoGAoXXpcVnJs0TJfjgrrcH_vip2cuihc9FhHl40LyFXDO4ZaPGF3UtbWgn6hMwYGFuUmotTMgMQstClNOfkIsZnyKMYOyPn3EilubIzsprTbmpT8E9132NLdyEG1yKNW_RpHKIftnsa9zFhR5thpOkJ6cN6-aNowwvS33QTdjimvBh6upz_XH8kH5q6jfjp-F6SX1-X68X34nH17WExfyy8ZDIVHBUDh8yDs04D02CYF7J09UYxr41BKDfOl41wWsm8VOAAreW8QWO5EZfk9pC7HYfXCWOquhA9tm3d4zDFihkrrNZKlJne_EOfh2ns8-8qzrhUIEqwWd0dlM9XxxGbajuGrh73FYPqb8sVq44tZ3t9TJxch5t3-VZrBp8PIPqQ6hSG_j9pfwDVgoGo</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Mao, Hongmin</creator><creator>Ding, Fang</creator><creator>Luo, Guang-Nan</creator><creator>Hu, Zhenhua</creator><creator>Chen, Xiahua</creator><creator>Xu, Feng</creator><creator>Yang, Zhongshi</creator><creator>Chen, Jingbo</creator><creator>Wang, Liang</creator><creator>Ding, Rui</creator><creator>Zhang, Ling</creator><creator>Gao, Wei</creator><creator>Xu, Jichan</creator><creator>Wu, Chengrui</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4624-4679</orcidid><orcidid>https://orcid.org/0000-0001-5886-3114</orcidid><orcidid>https://orcid.org/0000-0001-7880-9588</orcidid><orcidid>https://orcid.org/0000000158863114</orcidid><orcidid>https://orcid.org/0000000178809588</orcidid><orcidid>https://orcid.org/0000000346244679</orcidid></search><sort><creationdate>201704</creationdate><title>A multichannel visible spectroscopy system for the ITER-like W divertor on EAST</title><author>Mao, Hongmin ; Ding, Fang ; Luo, Guang-Nan ; Hu, Zhenhua ; Chen, Xiahua ; Xu, Feng ; Yang, Zhongshi ; Chen, Jingbo ; Wang, Liang ; Ding, Rui ; Zhang, Ling ; Gao, Wei ; Xu, Jichan ; Wu, Chengrui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-2e510be1c0b9b6016081c347bad51c688e07dbc7f3b65408150b0e9922fe89283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bandpass filters</topic><topic>Charge coupled devices</topic><topic>Diagnostic systems</topic><topic>Digital cameras</topic><topic>Discharge</topic><topic>Fluxes</topic><topic>Impurities</topic><topic>Nuclear power plants</topic><topic>Photomultiplier tubes</topic><topic>Profile measurement</topic><topic>Quantum efficiency</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Spectral resolution</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Tokamak devices</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Hongmin</creatorcontrib><creatorcontrib>Ding, Fang</creatorcontrib><creatorcontrib>Luo, Guang-Nan</creatorcontrib><creatorcontrib>Hu, Zhenhua</creatorcontrib><creatorcontrib>Chen, Xiahua</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Yang, Zhongshi</creatorcontrib><creatorcontrib>Chen, Jingbo</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>Ding, Rui</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>Xu, Jichan</creatorcontrib><creatorcontrib>Wu, Chengrui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Hongmin</au><au>Ding, Fang</au><au>Luo, Guang-Nan</au><au>Hu, Zhenhua</au><au>Chen, Xiahua</au><au>Xu, Feng</au><au>Yang, Zhongshi</au><au>Chen, Jingbo</au><au>Wang, Liang</au><au>Ding, Rui</au><au>Zhang, Ling</au><au>Gao, Wei</au><au>Xu, Jichan</au><au>Wu, Chengrui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multichannel visible spectroscopy system for the ITER-like W divertor on EAST</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2017-04</date><risdate>2017</risdate><volume>88</volume><issue>4</issue><spage>043502</spage><epage>043502</epage><pages>043502-043502</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>To facilitate long-pulse high power operation, an ITER-like actively cooled tungsten (W) divertor was installed in Experimental Advanced Superconducting Tokamak (EAST) to replace the original upper graphite divertor in 2014. A dedicated multichannel visible spectroscopic diagnostic system has been accordingly developed for the characterization of the plasma and impurities in the W divertor. An array of 22 lines-of-sight (LOSs) provides a profile measurement of the light emitted from the plasma along upper outer divertor, and the other 17 vertical LOSs view the upper inner divertor, achieving a 13 mm poloidal resolution in both regions. The light emitted from the plasma is collected by a specially designed optical lens assembly and then transferred to a Czerny-Turner spectrometer via 40 m quartz fibers. At the end, the spectra dispersed by the spectrometer are recorded with an Electron-Multiplying Charge Coupled Device (EMCCD). The optical throughput and quantum efficiency of the system are optimized in the wavelength range 350-700 nm. The spectral resolution/coverage can be adjusted from 0.01 nm/3 nm to 0.41 nm/140 nm by switching the grating with suitable groove density. The frame rate depends on the setting of LOS number in EMCCD and can reach nearly 2 kHz for single LOS detection. The light collected by the front optical lens can also be divided and partly transferred to a photomultiplier tube array with specified bandpass filter, which can provide faster sampling rates by up to 200 kHz. The spectroscopic diagnostic is routinely operated in EAST discharges with absolute optical calibrations applied before and after each campaign, monitoring photon fluxes from impurities and H recycling in the upper divertor. This paper presents the technical details of the diagnostic and typical measurements during EAST discharges.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>28456259</pmid><doi>10.1063/1.4979406</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4624-4679</orcidid><orcidid>https://orcid.org/0000-0001-5886-3114</orcidid><orcidid>https://orcid.org/0000-0001-7880-9588</orcidid><orcidid>https://orcid.org/0000000158863114</orcidid><orcidid>https://orcid.org/0000000178809588</orcidid><orcidid>https://orcid.org/0000000346244679</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2017-04, Vol.88 (4), p.043502-043502
issn 0034-6748
1089-7623
language eng
recordid cdi_proquest_journals_2124503709
source AIP Journals Complete; Alma/SFX Local Collection
subjects Bandpass filters
Charge coupled devices
Diagnostic systems
Digital cameras
Discharge
Fluxes
Impurities
Nuclear power plants
Photomultiplier tubes
Profile measurement
Quantum efficiency
Scientific apparatus & instruments
Spectral resolution
Spectroscopy
Spectrum analysis
Tokamak devices
Tungsten
title A multichannel visible spectroscopy system for the ITER-like W divertor on EAST
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multichannel%20visible%20spectroscopy%20system%20for%20the%20ITER-like%20W%20divertor%20on%20EAST&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Mao,%20Hongmin&rft.date=2017-04&rft.volume=88&rft.issue=4&rft.spage=043502&rft.epage=043502&rft.pages=043502-043502&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.4979406&rft_dat=%3Cproquest_cross%3E2124503709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124503709&rft_id=info:pmid/28456259&rfr_iscdi=true