A multichannel visible spectroscopy system for the ITER-like W divertor on EAST
To facilitate long-pulse high power operation, an ITER-like actively cooled tungsten (W) divertor was installed in Experimental Advanced Superconducting Tokamak (EAST) to replace the original upper graphite divertor in 2014. A dedicated multichannel visible spectroscopic diagnostic system has been a...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2017-04, Vol.88 (4), p.043502-043502 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To facilitate long-pulse high power operation, an ITER-like actively cooled tungsten (W) divertor was installed in Experimental Advanced Superconducting Tokamak (EAST) to replace the original upper graphite divertor in 2014. A dedicated multichannel visible spectroscopic diagnostic system has been accordingly developed for the characterization of the plasma and impurities in the W divertor. An array of 22 lines-of-sight (LOSs) provides a profile measurement of the light emitted from the plasma along upper outer divertor, and the other 17 vertical LOSs view the upper inner divertor, achieving a 13 mm poloidal resolution in both regions. The light emitted from the plasma is collected by a specially designed optical lens assembly and then transferred to a Czerny-Turner spectrometer via 40 m quartz fibers. At the end, the spectra dispersed by the spectrometer are recorded with an Electron-Multiplying Charge Coupled Device (EMCCD). The optical throughput and quantum efficiency of the system are optimized in the wavelength range 350-700 nm. The spectral resolution/coverage can be adjusted from 0.01 nm/3 nm to 0.41 nm/140 nm by switching the grating with suitable groove density. The frame rate depends on the setting of LOS number in EMCCD and can reach nearly 2 kHz for single LOS detection. The light collected by the front optical lens can also be divided and partly transferred to a photomultiplier tube array with specified bandpass filter, which can provide faster sampling rates by up to 200 kHz. The spectroscopic diagnostic is routinely operated in EAST discharges with absolute optical calibrations applied before and after each campaign, monitoring photon fluxes from impurities and H recycling in the upper divertor. This paper presents the technical details of the diagnostic and typical measurements during EAST discharges. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/1.4979406 |