Combination model of empirical mode decomposition and SVM for river flow forecasting
A reliable prediction of river flow is always important for sound planning and smooth operation of the water resource system. In this study, a combination models based on Empirical Mode Decomposition (EMD) and Support Vector Machine (SVM) model referred as EMD-SVM is proposed for estimating future v...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A reliable prediction of river flow is always important for sound planning and smooth operation of the water resource system. In this study, a combination models based on Empirical Mode Decomposition (EMD) and Support Vector Machine (SVM) model referred as EMD-SVM is proposed for estimating future value of monthly river flow data. The proposed EMD-SVM has three important stages. The first stage, the data were decomposed into several numbers of Intrinsic Mode Functions (IMF) and a residual using EMD technique. In the second stage, the meaningful signals are identified using a statistical measure and the new dataset are obtained in this stage. The final stage applied SVM as forecasting tool to perform the river flow forecasting. To assess the effectiveness of EMD-SVM model, Selangor and Bernam Rivers were used as case studies. The experiment results stated that the proposed EMD-SVM have outperformed other model based on Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Correlation Coefficient (r). This indicating that EMD-SVM is a useful tool to predict complex time series with non-stationary and nonlinearity issues as well as a promising new method for river flow forecasting. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4980989 |