High pressure band gap modification of LiCaAlF6

First-principles density functional calculations together with experimental measurements demonstrate that pressure (uniform and uniaxial) increases the band gap of a perfect lithium hexafluoroaluminate (LiCaAlF6, LiCAF) crystal. As fluoride crystals can be highly transmitting at vacuum ultraviolet w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2017-04, Vol.110 (14)
Hauptverfasser: Shimizu, Toshihiko, Luong, Mui Viet, Cadatal-Raduban, Marilou, Empizo, Melvin John F., Yamanoi, Kohei, Arita, Ren, Minami, Yuki, Sarukura, Nobuhiko, Mitsuo, Nakai, Azechi, Hiroshi, Pham, Minh Hong, Nguyen, Hung Dai, Ichiyanagi, Kouhei, Nozawa, Shunsuke, Fukaya, Ryo, Adachi, Shin-ichi, Nakamura, Kazutaka G., Fukuda, Kentaro, Kawazoe, Yoshiyuki, Steenbergen, Krista G., Schwerdtfeger, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:First-principles density functional calculations together with experimental measurements demonstrate that pressure (uniform and uniaxial) increases the band gap of a perfect lithium hexafluoroaluminate (LiCaAlF6, LiCAF) crystal. As fluoride crystals can be highly transmitting at vacuum ultraviolet wavelengths, crystal modifications that further increase the band gap are highly sought after for future Vacuum ultraviolet applications. Through an extensive series of density functional theory simulations, we demonstrate that the band gap increases monotonically from 12.2 eV to 14.1 eV with the application of uniform pressure. Through joint theoretical and experimental investigation, we explore different uniaxial compressions that can be achieved through cutting-edge laser-shock compression. We find that uniaxial pressure also increases the LiCAF band gap by 0.3 and 0.4 eV for a- and c-axis compressions, respectively.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4979106