In-situ analysis of optically thick nanoparticle clouds
Nanoparticles grown in reactive plasmas and nanodusty plasmas gain high interest from basic science and technology. One of the great challenges of nanodusty plasmas is the in-situ diagnostic of the nanoparticle size and refractive index. The analysis of scattered light by means of the Mie solution o...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2017-04, Vol.110 (17) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanoparticles grown in reactive plasmas and nanodusty plasmas gain high interest from basic science and technology. One of the great challenges of nanodusty plasmas is the in-situ diagnostic of the nanoparticle size and refractive index. The analysis of scattered light by means of the Mie solution of the Maxwell equations was proposed and used as an in-situ size diagnostic during the past two decades. Today, imaging ellipsometry techniques and the investigation of dense, i.e., optically thick nanoparticle clouds demand for analysis methods to take multiple scattering into account. We present the first 3D Monte-Carlo polarized radiative transfer simulations of the scattered light in a dense nanodusty plasma. This technique extends the existing diagnostic methods for the in-situ analysis of the properties of nanoparticles to systems where multiple scattering cannot be neglected. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4982645 |