Detecting multiple outliers in linear functional relationship model for circular variables using clustering technique

Outlier detection has been used extensively in data analysis to detect anomalous observation in data and has important application in fraud detection and robust analysis. In this paper, we propose a method in detecting multiple outliers for circular variables in linear functional relationship model....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mokhtar, Nurkhairany Amyra, Zubairi, Yong Zulina, Hussin, Abdul Ghapor
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Outlier detection has been used extensively in data analysis to detect anomalous observation in data and has important application in fraud detection and robust analysis. In this paper, we propose a method in detecting multiple outliers for circular variables in linear functional relationship model. Using the residual values of the Caires and Wyatt model, we applied the hierarchical clustering procedure. With the use of tree diagram, we illustrate the graphical approach of the detection of outlier. A simulation study is done to verify the accuracy of the proposed method. Also, an illustration to a real data set is given to show its practical applicability.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4982835