Construction of rational solutions of the real modified Korteweg-de Vries equation from its periodic solutions

In this paper, we consider the real modified Korteweg-de Vries (mKdV) equation and construct a special kind of breather solution, which can be obtained by taking the limit λj → λ 1 of the Lax pair eigenvalues used in the n-fold Darboux transformation that generates the order-n periodic solution from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2017-05, Vol.27 (5), p.053102-053102
Hauptverfasser: Xing, Qiuxia, Wang, Lihong, Mihalache, Dumitru, Porsezian, Kuppuswamy, He, Jingsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the real modified Korteweg-de Vries (mKdV) equation and construct a special kind of breather solution, which can be obtained by taking the limit λj → λ 1 of the Lax pair eigenvalues used in the n-fold Darboux transformation that generates the order-n periodic solution from a constant seed solution. Further, this special kind of breather solution of order n can be used to generate the order-n rational solution by taking the limit λ 1 → λ 0, where λ 0 is a special eigenvalue associated with the eigenfunction ϕ of the Lax pair of the mKdV equation. This eigenvalue λ 0, for which ϕ ( λ 0 ) = 0 , corresponds to the limit of infinite period of the periodic solution. Our analytical and numerical results show the effective mechanism of generation of higher-order rational solutions of the mKdV equation from the double eigenvalue degeneration process of multi-periodic solutions.
ISSN:1054-1500
1089-7682
DOI:10.1063/1.4982721