Construction of rational solutions of the real modified Korteweg-de Vries equation from its periodic solutions
In this paper, we consider the real modified Korteweg-de Vries (mKdV) equation and construct a special kind of breather solution, which can be obtained by taking the limit λj → λ 1 of the Lax pair eigenvalues used in the n-fold Darboux transformation that generates the order-n periodic solution from...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2017-05, Vol.27 (5), p.053102-053102 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the real modified Korteweg-de Vries (mKdV) equation and construct a special kind of breather solution, which can be obtained by taking the limit λj
→ λ
1 of the Lax pair eigenvalues used in the n-fold Darboux transformation that generates the order-n periodic solution from a constant seed solution. Further, this special kind of breather solution of order n can be used to generate the order-n rational solution by taking the limit λ
1 → λ
0, where λ
0 is a special eigenvalue associated with the eigenfunction
ϕ
of the Lax pair of the mKdV equation. This eigenvalue λ
0, for which
ϕ
(
λ
0
)
=
0
, corresponds to the limit of infinite period of the periodic solution. Our analytical and numerical results show the effective mechanism of generation of higher-order rational solutions of the mKdV equation from the double eigenvalue degeneration process of multi-periodic solutions. |
---|---|
ISSN: | 1054-1500 1089-7682 |
DOI: | 10.1063/1.4982721 |