Very strong Rydberg atom scattering in K(12p)–CH3NO2 collisions: Role of transient ion pair formation
Collisions between K(12p) Rydberg atoms and CH3NO2 target molecules are studied. Whereas CH3NO2 can form long-lived valence-bound CH3 NO 2 − ions, the data provide no evidence for production of long-lived K+ ⋯ CH3 NO 2 − ion pair states. Rather, the data show that collisions result in unusually stro...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2017-05, Vol.146 (18) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Collisions between K(12p) Rydberg atoms and CH3NO2 target molecules are studied. Whereas CH3NO2 can form long-lived valence-bound CH3
NO
2
−
ions, the data provide no evidence for production of long-lived K+
⋯
CH3
NO
2
−
ion pair states. Rather, the data show that collisions result in unusually strong Rydberg atom scattering. This behavior is attributed to ion-ion scattering resulting from formation of transient ion pair states through transitions between the covalent K(12p) + CH3NO2 and ionic K+ + (dipole bound) CH3
NO
2
−
terms in the quasimolecule formed during collisions. The ion-pair states are destroyed through rapid dissociation of the CH3
NO
2
−
ions induced by the field of the K+ core ion, the detached electron remaining bound to the K+ ion in a Rydberg state. Analysis of the experimental data shows that ion pair lifetimes ≳10 ps are sufficient to account for the present observations. The present results are consistent with recent theoretical predictions that Rydberg collisions with CH3NO2 will result in strong collisional quenching. The work highlights a new mechanism for Rydberg atom scattering that could be important for collisions with other polar targets. For purposes of comparison, results obtained following K(12p)–SF6 collisions are also included. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4982935 |