Advanced Endwall Contouring for Loss Reduction and Outflow Homogenization for an Optimized Compressor Cascade

The following paper deals with the development of an optimized non-axisymmetric endwall contour for reducing the total pressure loss and for homogenizing the outflow of a highly-loaded compressor cascade. In contrast to former studies using a NACA-65 K48 cascade airfoil this study starts with the de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of turbomachinery, propulsion and power propulsion and power, 2017-03, Vol.2 (1), p.1
Hauptverfasser: Reutter, Oliver, Rozanski, Magdalena, Hergt, Alexander, Nicke, Eberhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The following paper deals with the development of an optimized non-axisymmetric endwall contour for reducing the total pressure loss and for homogenizing the outflow of a highly-loaded compressor cascade. In contrast to former studies using a NACA-65 K48 cascade airfoil this study starts with the design of a new high-performance airfoil which is based on the aerodynamic boundary conditions of the NACA-65 K48 cascade. This new airfoil is then used as a basis. Optimizations of the airfoil and of the endwall contour are performed using the German Aerospace Center (DLR) in-house tool AutoOpti and the RANS (Reynolds-averaged Navier-Stokes)-solver TRACE (Turbomachinery Research Aerodynamic Computational Environment). Three operating points at an inflow Mach number of 0.67 with different inflow angles are used to secure a wide operating range. The optimized endwall contour changes the secondary flow in such a way that the corner stall is reduced which, in turn, significantly reduces the total pressure loss. The endwall contour in the outflow region leads to a considerable homogenization of the outflow in the near wall region. Using non-axisymmetric endwall shaping demonstrates a valuable measure to further improve highly-efficient compressor blading on the vane level.
ISSN:2504-186X
2504-186X
DOI:10.3390/ijtpp2010001