Mean-based Heuristic Search for Real-Time Planning
In this paper, we introduce a new heuristic search algorithm based on mean values for real-time planning, called MHSP. It consists in associating the principles of UCT, a bandit-based algorithm which gave very good results in computer games, and especially in Computer Go, with heuristic search in or...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce a new heuristic search algorithm based on mean values for real-time planning, called MHSP. It consists in associating the principles of UCT, a bandit-based algorithm which gave very good results in computer games, and especially in Computer Go, with heuristic search in order to obtain a real-time planner in the context of classical planning. MHSP is evaluated on different planning problems and compared to existing algorithms performing on-line search and learning. Besides, our results highlight the capacity of MHSP to return plans in a real-time manner which tend to an optimal plan over the time which is faster and of better quality compared to existing algorithms in the literature. |
---|---|
ISSN: | 2331-8422 |