Using big data techniques for measuring productive friction in mass collaboration online environments

The advent of the social web brought with it challenges and opportunities for research on learning and knowledge construction. Using the online-encyclopedia Wikipedia as an example, we discuss several methods that can be applied to analyze the dynamic nature of knowledge-related processes in mass co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer-supported collaborative learning 2018-12, Vol.13 (4), p.439-456
Hauptverfasser: Holtz, Peter, Kimmerle, Joachim, Cress, Ulrike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The advent of the social web brought with it challenges and opportunities for research on learning and knowledge construction. Using the online-encyclopedia Wikipedia as an example, we discuss several methods that can be applied to analyze the dynamic nature of knowledge-related processes in mass collaboration environments. These methods can help in the analysis of the interactions between the two levels that are relevant in computer-supported collaborative learning (CSCL) research: The individual level of learners and the collective level of the group or community. In line with constructivist theories of learning, we argue that the development of knowledge on both levels is triggered by productive friction, that is, the prolific resolution of socio-cognitive conflicts. By describing three prototypical methods that have been used in previous Wikipedia research, we review how these techniques can be used to examine the dynamics on both levels and analyze how these dynamics can be predicted by the amount of productive friction. We illustrate how these studies make use of text classifiers, social network analysis, and cluster analysis in order to operationalize the theoretical concepts. We conclude by discussing implications for the analysis of dynamic knowledge processes from a learning sciences perspective.
ISSN:1556-1607
1556-1615
DOI:10.1007/s11412-018-9285-y