Vascular Matrix Metalloproteinase-2–Dependent Cleavage of Calcitonin Gene-Related Peptide Promotes Vasoconstriction

Matrix metalloproteinase (MMP)-2 has been historically associated with the process of vascular remodeling through the cleavage of extracellular matrix proteins. However, we recently found that MMP-2 also cleaves the endothelium-derived peptide big endothelin-1, ET-1[1–38] and yields the novel vasoco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2000-10, Vol.87 (8), p.670-676
Hauptverfasser: Fernandez-Patron, Carlos, Stewart, Ken G, Zhang, Yunlong, Koivunen, Erkki, Radomski, Marek W, Davidge, Sandra T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Matrix metalloproteinase (MMP)-2 has been historically associated with the process of vascular remodeling through the cleavage of extracellular matrix proteins. However, we recently found that MMP-2 also cleaves the endothelium-derived peptide big endothelin-1, ET-1[1–38] and yields the novel vasoconstrictor ET-1[1–32]. We therefore investigated the effects of MMP-2 inhibitors as potential vasodilators. MMP inhibition with ortho-phenanthroline (0.3 to 30 μmol/L) induced vasorelaxation of isolated rat mesenteric arteries (maximum of relaxation=74.5±27.6% at 30 μmol/L). However, phosphoramidon (0.3 to 30 μmol/L), which inhibits some metalloenzymes, but not MMP-2, did not dilate the arteries. Selective inhibition of endogenous MMP-2 with the novel tissue-permeable cyclic peptide CTTHWGFTLC (CTT, 10 μmol/L) also caused vasorelaxation (by 85±6%), whereas STTHWGFTLS (10 μmol/L), an inactive CTT analogue, did not dilate the arteries. Interestingly, the vasorelaxation that results from MMP-2 inhibition was endothelium-independent. Thus, we examined whether MMP-2 acted on peptides derived from the smooth muscle or the perivascular nerves. Recombinant human MMP-2 cleaved calcitonin gene-related peptide (CGRP) specifically at the Gly-Leu peptide bond and reduced the vasodilatory potency of CGRP by 20-fold. Inhibition of MMP-2 increased the amount of intact CGRP in arteries and enhanced vasorelaxation induced by anandamide, which stimulates CGRP release. Vasorelaxation in response to MMP-2 inhibition was abolished by CGRP[8–37], a selective CGRP receptor antagonist, and by capsaicin, which depletes arterial perivascular nerves of CGRP. We conclude that vascular MMP-2 cleaves endogenous CGRP and promotes vasoconstriction. These data suggest a novel mechanism of regulating the vasoactive and, possibly, the neurohormonal actions of CGRP and establish MMP-2 as a modulator of vascular function.
ISSN:0009-7330
1524-4571
DOI:10.1161/01.res.87.8.670