Efficiency bounds on thermoelectric transport in magnetic fields: The role of inelastic processes
We examine the efficiency of an effective two-terminal thermoelectric device under broken time-reversal symmetry. The setup is derived from a three-terminal thermoelectric device comprising a thermal terminal and two electronic contacts, under a magnetic field. We find that breaking time-reversal sy...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2016-09, Vol.94 (12), p.121402(R), Article 121402 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We examine the efficiency of an effective two-terminal thermoelectric device under broken time-reversal symmetry. The setup is derived from a three-terminal thermoelectric device comprising a thermal terminal and two electronic contacts, under a magnetic field. We find that breaking time-reversal symmetry in the presence of the inelastic electron-phonon processes can significantly enhance the figure of merit for delivering electric power by supplying heat from a phonon bath, beyond the one for producing the electric power by investing thermal power from the electronic heat current. The efficiency of such a device is bounded by the non-negativity of the entropy production of the original three-terminal junction. The efficiency at maximal power can be quite close to the Carnot efficiency, but then the electric power vanishes. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.94.121402 |