Voltage linearity modulation and polarity dependent conduction in metal-insulator-metal capacitors with atomic-layer-deposited Al2O3/ZrO2/SiO2 nano-stacks
Excellent voltage linearity of metal-insulator-metal (MIM) capacitors is highly required for next generation radio frequency integration circuits. In this work, employing atomic layer deposition technique, we demonstrated how the voltage linearity of MIM capacitors was modulated by adding different...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2015-07, Vol.118 (1) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Excellent voltage linearity of metal-insulator-metal (MIM) capacitors is highly required for next generation radio frequency integration circuits. In this work, employing atomic layer deposition technique, we demonstrated how the voltage linearity of MIM capacitors was modulated by adding different thickness of SiO2 layer to the nano-stack of Al2O3/ZrO2. It was found that the quadratic voltage coefficient of capacitance (α) can be effectively reduced from 1279 to −75 ppm/V2 with increasing the thickness of SiO2 from zero to 4 nm, which is more powerful than increasing the thickness of ZrO2 in the Al2O3/ZrO2 stack. This is attributed to counteraction between the positive α for Al2O3/ZrO2 and the negative one for SiO2 in the MIM capacitors with Al2O3/ZrO2/SiO2 stacks. Interestingly, voltage-polarity dependent conduction behaviors in the MIM capacitors were observed. For electron bottom-injection, the addition of SiO2 obviously suppressed the leakage current; however, it abnormally increased the leakage current for electron top-injection. These are ascribed to the co-existence of shallow and deep traps in ZrO2, and the former is in favor of the field-assisted tunnelling conduction and the latter contributes to the trap-assisted tunnelling process. The above findings will be beneficial to device design and process optimization for high performance MIM capacitors. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4923349 |