Degradation of silver near-field optical probes and its electrochemical reversal
Deterioration of the outstanding optical properties of elemental silver due to atmospheric corrosion compromises its use in the field of plasmonics. Therefore, more chemically inert, but more lossy, metals (e.g., gold) are often used as a compromise. Silver tips for near-field optical microscopy are...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2015-08, Vol.107 (9) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deterioration of the outstanding optical properties of elemental silver due to atmospheric corrosion compromises its use in the field of plasmonics. Therefore, more chemically inert, but more lossy, metals (e.g., gold) are often used as a compromise. Silver tips for near-field optical microscopy are only utilized by specialized laboratories with in-house tip production facilities. This article presents a time-dependent study of the effect of atmospheric corrosion on the electromagnetic enhancement of solid silver tips. It was found that chemical degradation renders them unusable for tip-enhanced Raman spectroscopy (TERS) within the first two days after production. Furthermore, we present a simple electrochemical method for recovering the enhancing effect of corroded silver tips, as well as for storing freshly prepared probes, for example, for easy shipment. The present work greatly simplifies the experimental aspects of near-field optical microscopy, which should make near-field optical techniques, and, in particular, TERS, more accessible to the scientific community. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4929880 |