Inclination angle effect on natural convection in a square cavity partially filled with non-Newtonian fluids layer
The problem of inclination angle effect on natural convection in a square cavity partially filled with non-Newtonian fluid layer is studied numerically using The Finite Volume Method. Governing equations are solved over wide range of Darcy number (10−5 ≤ Da ≤ 10−1), power-law index(0.6 ≤ n ≤ 1.4), t...
Gespeichert in:
Format: | Tagungsbericht |
---|---|
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The problem of inclination angle effect on natural convection in a square cavity partially filled with non-Newtonian fluid layer is studied numerically using The Finite Volume Method. Governing equations are solved over wide range of Darcy number (10−5 ≤ Da ≤ 10−1), power-law index(0.6 ≤ n ≤ 1.4), the inclination angle of the cavity (0° ≤ ω ≤ 90°), Rayleigh number (Ra = 105) and porous layer thickness (S = 0.5). The results presented for values of the governing parameters in terms of streamlines in both porous/non-Newtonian fluid-layer, isotherms in both porous/non-Newtonian fluid-layer and average Nusselt number. It is shown that the heat transfer has maximum value when the power-law index is less than one (pseudoplastic fluid), and then decreases remarkably as the power-law index increases. The results have possible applications in heat-removal and heat-storage non-Newtonian fluid-saturated porous systems. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4931334 |