Enhancing the branching ratios in the dissociation channels for O16O16O18 molecule by designing optimum laser pulses: A study using stochastic optimization
We propose a strategy of using a stochastic optimization technique, namely, simulated annealing to design optimum laser pulses (both IR and UV) to achieve greater fluxes along the two dissociating channels (O18 + O16O16 and O16 + O16O18) in O16O16O18 molecule. We show that the integrated fluxes obta...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2015-10, Vol.143 (14) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a strategy of using a stochastic optimization technique, namely, simulated annealing to design optimum laser pulses (both IR and UV) to achieve greater fluxes along the two dissociating channels (O18 + O16O16 and O16 + O16O18) in O16O16O18 molecule. We show that the integrated fluxes obtained along the targeted dissociating channel is larger with the optimized pulse than with the unoptimized one. The flux ratios are also more impressive with the optimized pulse than with the unoptimized one. We also look at the evolution contours of the wavefunctions along the two channels with time after the actions of both the IR and UV pulses and compare the profiles for unoptimized (initial) and optimized fields for better understanding the results that we achieve. We also report the pulse parameters obtained as well as the final shapes they take. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4932333 |