A semi-Lagrangian approximation in the Navier-Stokes equations for the gas flow around a wedge
In the paper, a semi-Lagrangian approximation is presented for the numerical solution of the two-dimensional time-dependent Navier-Stokes equations for viscous heat-conducting gas. In each equation, a combination of three first-order derivatives describing the transfer of a corresponding substance (...
Gespeichert in:
Format: | Tagungsbericht |
---|---|
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the paper, a semi-Lagrangian approximation is presented for the numerical solution of the two-dimensional time-dependent Navier-Stokes equations for viscous heat-conducting gas. In each equation, a combination of three first-order derivatives describing the transfer of a corresponding substance (density, velocity components, or internal energy) along trajectories is interpreted as the “transfer derivative” in the transfer direction. The other terms of the equations are written in the Euler form. On the sought-for time level, the standard conforming finite element method is realized for them with the linear elements on triangles and the bilinear ones on rectangles. The stencil adaptation along trajectories enables us to avoid the Courant-Friedrichs-Lewy upper limit which describes the dependence of the time step on the mesh-size of the space triangulation. At the end of the paper, a numerical example illustrates the implementation of the described algorithms. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4934336 |