Twist-controlled resonant tunnelling between monolayer and bilayer graphene
We investigate the current-voltage characteristics of a field-effect tunnelling transistor comprised of both monolayer and bilayer graphene with well-aligned crystallographic axes, separated by three layers of hexagonal boron nitride. Using a self-consistent description of the device's electros...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2015-11, Vol.107 (20) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the current-voltage characteristics of a field-effect tunnelling transistor comprised of both monolayer and bilayer graphene with well-aligned crystallographic axes, separated by three layers of hexagonal boron nitride. Using a self-consistent description of the device's electrostatic configuration, we relate the current to three distinct tunable voltages across the system and hence produce a two-dimensional map of the I-V characteristics in the low energy regime. We show that the use of gates on either side of the heterostructure offers a fine degree of control over the device's rich array of characteristics, as does varying the twist between the graphene electrodes. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4935988 |