An integrable extension of a soliton hierarchy associated with so(3,ℝ) and its bi-Hamiltonian formulation

A hierarchy of soliton equations is constructed from an extended spectral problem associated with the three-dimensional special orthogonal real Lie algebra so(3,ℝ) by means of zero curvature equations. The bi-Hamiltonian structure of this hierarchy is also presented via the trace identity.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2015-11, Vol.56 (11), p.1
Hauptverfasser: Manukure, Solomon, Ma, Wen-Xiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A hierarchy of soliton equations is constructed from an extended spectral problem associated with the three-dimensional special orthogonal real Lie algebra so(3,ℝ) by means of zero curvature equations. The bi-Hamiltonian structure of this hierarchy is also presented via the trace identity.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4936146