Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes
We report on a quartz-enhanced photoacoustic sensor (QEPAS) based on a custom-made quartz tuning fork (QTF) to operate in both the fundamental and the first overtone vibrational mode resonances. The QTF fundamental mode resonance falls at ∼3 kHz and the first overtone at ∼18 kHz. Electrical tests sh...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2015-12, Vol.107 (23) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report on a quartz-enhanced photoacoustic sensor (QEPAS) based on a custom-made quartz tuning fork (QTF) to operate in both the fundamental and the first overtone vibrational mode resonances. The QTF fundamental mode resonance falls at ∼3 kHz and the first overtone at ∼18 kHz. Electrical tests showed that the first overtone provides a higher quality factor and increased piezoelectric current peak values, with respect to the fundamental flexural mode. To evaluate the QTF acousto-electric energy conversion efficiency, we operated the QEPAS in the near-IR and selected water vapor as the target gas. The first overtone resonance provides a QEPAS signal-to-noise ratio ∼5 times greater with respect to that measured for the fundamental mode. These results open the way to employing QTF overtone vibrational modes for QEPAS based trace gas sensing. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4937002 |