Impact of SOL plasma profiles on lower hybrid current drive: Experimental evidence, mitigation and modeling approaches
Recent progress in understanding and mitigating parasitic wave absorption in edge plasmas is presented. Experimental observations collected on Alcator C-Mod suggest multiple physics mechanisms are involved in such losses. Localized measurement of parametric decay instabilities (PDIs) has been perfor...
Gespeichert in:
Format: | Tagungsbericht |
---|---|
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent progress in understanding and mitigating parasitic wave absorption in edge plasmas is presented. Experimental observations collected on Alcator C-Mod suggest multiple physics mechanisms are involved in such losses. Localized measurement of parametric decay instabilities (PDIs) has been performed using RF Langmuir probes. The divertor heat flux due to LH and ionization power loss have been evaluated quantitatively. We observe that the LHCD efficiency can be recovered when the SOL density profile is controlled by operating the tokamak at high current. The experimental progresses motivated a re-examination of the LHCD simulation model based on the ray-tracing/Fokker-Planck code (GENRAY/CQL3D). The effect of introducing a relatively small wave number broadening in the launched power spectrum and using 2D SOL density and temperature profiles was investigated. Comparison with C-Mod experiment indicates that the new model can explain the experimental trend over a wider density range including the density regime where disagreement was seen previously, suggesting that including realistic SOL geometry is a key to improve the simulation accuracy. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4936481 |