An analysis of transcrystallinity in polymers

Polymer crystallization often occurs in the presence of foreign bodies, such as walls of processing tools. In such cases, there is a competition between nucleation in the bulk polymer and nucleation on well-identified surfaces. If many nuclei are activated at the surfaces, their proximity imposes th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Freire, L, Combeaud, C, Billon, N, J-M, Haudin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polymer crystallization often occurs in the presence of foreign bodies, such as walls of processing tools. In such cases, there is a competition between nucleation in the bulk polymer and nucleation on well-identified surfaces. If many nuclei are activated at the surfaces, their proximity imposes that entities emanating from these nuclei grow preferentially normal to the surfaces, leading to transcrystalline zones. The competition between surface and bulk nucleation can be studied through crystallizations of thin polymer films in contact with pan surfaces in a DSC apparatus. These experiments show that in thin samples transcrystallinity is limited by sample thickness. When thickness increases, the transcrystalline zones can grow, but up to a limiting value, because at a certain stage their development is stopped by the growth of bulk spherulites. A specific analysis of these DSC experiments gives access to crystallization parameters such as the number of nuclei per unit surface or the growth rate, and makes it possible to determine the crystallization kinetics of the polymer not disturbed by transcrystallinity.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4937288