The simulation of temperature distribution and relative humidity with liquid concentration of 50% using computational fluid dynamics
The study of humidity distribution simulation inside a room has been widely conducted by using computational fluid dynamics (CFD). Here, the simulation was done by employing inputs in the experiment of air humidity reduction in a sample house. Liquid dessicant CaCl2was used in this study to absorb h...
Gespeichert in:
Format: | Tagungsbericht |
---|---|
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The study of humidity distribution simulation inside a room has been widely conducted by using computational fluid dynamics (CFD). Here, the simulation was done by employing inputs in the experiment of air humidity reduction in a sample house. Liquid dessicant CaCl2was used in this study to absorb humidity in the air, so that the enormity of humidity reduction occured during the experiment could be obtained.The experiment was conducted in the morning at 8 with liquid desiccant concentration of 50%, nozzle dimension of 0.2 mms attached in dehumidifier, and the debit of air which entered the sample house was 2.35 m3/min. Both in inlet and outlet sides of the room, a DHT 11 censor was installed and used to note changes in humidity and temperature during the experiment. In normal condition without turning on the dehumidifier, the censor noted that the average temperature inside the room was 28°C and RH of 65%.The experiment result showed that the relative humidity inside a sample house was decreasing up to 52% in inlet position. Further, through the results obtained from CFD simulation, the temperature distribution and relative humidity inside the sample house could be seen. It showed that the concentration of liquid desiccant of 50% experienced a decrease while the relative humidity distribution was considerably good since the average RH was 55% followed by the increase in air temperature of 29.2° C inside the sample house. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4938351 |