Bulk universality of sparse random matrices

We consider the adjacency matrix of the ensemble of Erdős-Rényi random graphs which consists of graphs on N vertices in which each edge occurs independently with probability p. We prove that in the regime pN ≫ 1, these matrices exhibit bulk universality in the sense that both the averaged n-point co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2015-12, Vol.56 (12), p.1
Hauptverfasser: Huang, Jiaoyang, Landon, Benjamin, Yau, Horng-Tzer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the adjacency matrix of the ensemble of Erdős-Rényi random graphs which consists of graphs on N vertices in which each edge occurs independently with probability p. We prove that in the regime pN ≫ 1, these matrices exhibit bulk universality in the sense that both the averaged n-point correlation functions and distribution of a single eigenvalue gap coincide with those of the GOE. Our methods extend to a class of random matrices which includes sparse ensembles whose entries have different variances.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4936139